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Figure 1. GauFRe reconstructs dynamic scenes from casually-captured monocular video inputs. Our representation renders in real-time
(> 30FPS) while achieving high rendering performance. GauFRe also decomposes static/dynamic regions without extra supervision.

Abstract

We propose a method for dynamic scene reconstruction
using deformable 3D Gaussians that is tailored for monoc-
ular video. Building upon the efficiency of Gaussian splat-
ting, our approach extends the representation to accommo-
date dynamic elements via a deformable set of Gaussians
residing in a canonical space, and a time-dependent de-
formation field defined by a multi-layer perceptron (MLP).
Moreover, under the assumption that most natural scenes
have large regions that remain static, we allow the MLP to
focus its representational power by additionally including a
static Gaussian point cloud. The concatenated dynamic and
static point clouds form the input for the Gaussian Splatting
rasterizer, enabling real-time rendering. The differentiable
pipeline is optimized end-to-end with a self-supervised ren-
dering loss. Our method achieves results that are compara-
ble to state-of-the-art dynamic neural radiance field meth-
ods while allowing much faster optimization and rendering.

Project Webpage: this url.

1. Introduction
High-quality 3D reconstruction of dynamic scenes from
RGB images is a persistent challenge in computer vision.

The challenge is especially great from monocular camera
video: the setting is ill-posed as constraints on the sur-
face geometry must be formed by simultaneously solving
for an estimate of the scene’s motion over time. Structure
from motion provides an estimate of rigid motion for static
scenes, but real-world scenes have motions that extend be-
yond rigid or piecewise rigid to continual deformation, such
as on human subjects. Given this challenge, one relaxation
of the problem is to consider novel view synthesis instead,
where we reconstruct the appearance of the scene to allow
applications in editing to re-pose or re-time the scene.

Inverse graphics approaches using an image rendering
loss have recently created optimization-based reconstruc-
tion methods that can achieve high quality for static or dy-
namic scenes with many cameras. These often use neural
networks (or multi-layer perceptrons; MLPs) as a function
to predict the values of physical properties in a field, such
as the density and radiance volumes within the influential
neural radiance field (NeRF) technique [20]. Optimizing
these MLPs with gradient descent is robust, often leading
to good solutions without tricky regularization [35]. How-
ever, neural networks are time-consuming to optimize via
gradient descent, and volume rendering requires many sam-
ples of the network to create an image. Faster optimiza-
tion and subsequent rendering can be achieved with the help
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Figure 2. An overview of our dynamic scene representation. At each time frame t, our method reconstructs the scene as a combination
of static and deformable anisotropic 3D Gaussians. The features of the deformable Gaussians are optimized in a canonical space and
warped into frame t using a deformation field. The static Gaussians are optimized in world space. We represent the deformation field using
a multi-layer perceptron (MLP) parameterized by time t.

of spatial indexing data structures, such as voxel grids [6],
octrees [41], and multi-scale hash tables [21, 31], or with
proxy geometries such as planes [2, 7]. As they lack the
self-regularizing properties of neural networks, these may
require additional regularization. Other proxies are possi-
ble: following point-based graphics [40, 44], composing
a scene of many isotropic Gaussians is convenient as they
are differentiable everywhere [27], can be splatted in closed
form [19, 30], and can be z-sorted efficiently under small-
Gaussian assumptions without ray marching [13]. Careful
efficient implementation [12] leads to real-time rendering at
high resolutions, and overall produces compelling results.

Extending this idea to parameterize Gaussians by time
for dynamic scenes is natural, with the idea that each repre-
sents a moving and deforming particle or blob/area of space
tracked through time—the Lagrangian interpretation in the
analogy to fluid flow. This can work well in settings with
sufficient constraints upon the motion of the flow, e.g., in
360° multi-camera settings [18]. For the underconstrained
monocular video setting where constraints are sparse, it is
challenging to directly optimize the positions and covari-
ances of Gaussians as accurate prediction of both geometry
and motion are required, leading to low-quality output.

Instead, for monocular video, we propose a Eulerian per-
spective on motion by modeling a field over time that can
be sampled to predict Gaussian deformation. This defor-
mation happens from a canonical Gaussian space. Rather
than use a fixed spatial data structure for this field, which
can be memory expensive, we use an MLP to represent the
field. This MLP is less sensitive to incorrect initialization
and can optimize more easily given the sparse constraints
than directly optimizing Gaussians. Beyond that, most re-
gions of real-world dynamic scene are quasi-static. As such,

we split the scene into its static and dynamic components
with a separate non-deforming set of Gaussians that are
initialized around structure-from-motion-derived 3D points
to ease the separation. Using reconstruction losses on the
input video, we optimize the position, covariance, opac-
ity, and appearance parameters of static Gaussians directly,
and optimize the position of the dynamic Gaussian clouds
through the deformation MLP. In evaluation, this approach
achieves comparable quality to non-Gaussian-based neural
scene representations, while being fast to optimize (20 min-
utes rather than hours) and providing real-time rendering for
novel view synthesis.

We contribute:
1. A dynamic scene representation of canonical Gaussians

deformed by a field represented by an MLP.
2. A static Gaussian cloud that represents quasi-static re-

gions and allows explicit separation of dynamic regions.
3. An experimental validation of this approach on synthetic

and real-world datasets against eight baselines.

2. Related Work

3D and 4D Scene Reconstruction Given the success
of 3D voxel grids as an explicit representation for static
scenes [3, 6, 11, 31, 41], a straightforward approach is
to extend them into a fourth dimension for time to han-
dle dynamic content. Unfortunately, the memory require-
ments of such a 4D grid quickly become prohibitive even for
short sequences. As a result, a number of methods propose
structures and techniques that reduce the memory complex-
ity while still fundamentally being four-dimensional grids.
Park et al. [24] extend Muller et al.’s multi-level spatial
hash grid [21] to 4D, and additionally allow for the separate



learning of static and dynamic features. This latter capa-
bility allows the model to focus the representational power
of the 4D hash grid on dynamic regions. Another com-
mon approach factorizes the spatio-temporal grid into low-
dimensional components. Jang and Kim [10] propose rank-
one vectors or low-rank matrices, providing a 4D counter-
part of the 3D tensorial radiance fields of Chen et al. [3].
Shao et al. [29] hierarchically decompose the scene into
three time-conditioned volumes, each represented by three
orthogonal planes of feature vectors. An even more com-
pact HexPlanes solution by Cao and Johnson [2] use six
planes, each spanning two of the four spatio-temporal axes.
A similar decomposition is presented by Fridovich-Keil et
al. [7] as part of a general representation that uses

(
d
2

)
planes

to factorize any arbitrary d-dimensional space.

Motion Reconstruction While 4D, none of these ap-
proaches explicitly account for motion, e.g., they do not de-
fine correspondence over time. To do so, Tretschk et al. [32]
discover deformation fields that align scenes under repro-
jection. Park et al. [23] deform a canonical field by a higher-
dimensional time-varying field to accommodate topology
changes. Fang et al. [5] demonstrate a hybrid representation
that defines a 3D canonical space explicitly as a voxel grid,
then queries it using an implicit deformation field for 4D
spatio-temporal points. Guo et al. [9] propose a similar ap-
proach but use additional features interpolated from an ex-
plicit time-independent deformation grid to deform into the
canonical frame. Some works also attempt to split static and
dynamic scene parts to improve quality [16, 17, 34]. Unlike
these works, our approach uses Gaussian clouds instead of
MLPs or spatial data structures, including a static cloud and
a dynamic cloud deformed from a canonical frame.

Point-based Rendering Optimization-based point graph-
ics are also popular for reconstruction [1], including spher-
ical proxy geometries [15], splatting-based approaches [12,
40], methods for computing derivates of points rendered
to single pixels [28], and methods for view-varying opti-
mization of points [14]. Point-based approaches can also be
fast, accelerating rendering and so optimization too [36, 42].
Such approaches are also adaptable to dynamic scenes [25],
such as the dynamic point fields method of Prokudin et
al. In contrast, our approach uses Gaussians as the base
primitive, from which dynamic scene regions are deformed
around fixed static regions.

Contemporaneous Work Finally, we note contempo-
raneous works using dynamic Gaussian representations,
all published or in preprint within the last three months.
Liuten et al. [18] consider the 360° multi-camera case that
is constrained in spacetime, and take a Lagrangian track-
ing approach. Yang and Yang et al. [39] consider a more
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Figure 3. Optimization architecture. The deformation field’s
domain is an embedding space of time t and Gaussian position x.
Gradients do not flow to x from the MLP to prevent entanglement.

flexible approach where 4D Gaussian position and color are
directly optimized over time. Zielonka et al. [43] approach
the problem of driveable human avatars from multi-camera
capture using Gaussians for tracking.

The methods of Wu et al. [33] and Yang and Gao et
al. [38] are closest to our approach as both use a deforma-
tion field parameterized by an MLP. Wu et al. represent the
Gaussians via HexPlanes and hashed coordinates, which is
fast to render but does not produce as high a quality of re-
construction as our method and does not separate static and
dynamic scene regions. Yang and Gao et al. [38] use an
explicit rather than spatial representation for the Gaussians,
but also do not separate static and dynamic regions.

3. Method
3.1. 3D Gaussian Splatting

Following Kerbl et al. [12], we start by representing the
scene as a set of n points {xi ∈ R3, i = 1, ..., n}. Each
point is associated with features (Σi, σi, ci) that define the
local radiance field as an anisotropic Gaussian distribution
centered at xi with covariance Σi, density σi, and view-
dependent color ci represented by 2nd-order spherical har-
monics. Given a set of multi-view images of the scene, we
can penalize a rendering loss to optimize the set of Gaus-
sians {Gi = (xi,Σi, σi, ci)} to represent the scene’s global
radiance field for tasks like novel view synthesis.

To ensure Σi represents a valid positive semi-definite co-
variance matrix in the optimization, it is factored into a ro-
tation matrix Ri ∈ R3×3 and scaling vector si ∈ R3. An ex-
ponential activation is applied to si to prevent negative val-
ues while retaining differentiability over the domain. Thus,

Σi = RiExp(si)Exp(si
T
)Ri

T . (1)

In practice, Ri is inferred from a unit-length quaternion



qi ∈ R4 that provides better convergence behavior. The ini-
tial position xi of the Gaussians is provided by a 3D point
cloud obtained with a structure-from-motion algorithm. As
the optimization proceeds, the Gaussians are periodically
cloned, split, and pruned to achieve a suitable trade-off be-
tween rendering quality and computational resources.

In addition to the Gaussian scene representation, Kerbl et
al. demonstrate how the many continuous radiance distri-
butions can be efficiently rendered on graphics hardware.
Given a target camera view transformation V and projec-
tion matrix K, each Gi is reduced to a Gaussian distribution
in screen space with projected mean ui = KVxi ∈ R2 and
2D covariance defined by the Jacobian J of K as

Σ′
i = JVΣiVT JT (2)

The 2D Gaussians are then rasterized using Zwicker et
al.’s Elliptical Weighted Average (EWA) splatting [44].

3.2. Deformable Gaussian Fields

To model a dynamic scene, we assume that it is equivalent
to a static scene that is deformed from a canonical point
set {Gi = (xi, si,qi, σi, ci)}i∈N via a deformation field
parameterized by an MLP Φ:

Φ : (xi, t) → (δxti, δsti, δqt
i), (3)

where density σi does not change over time, and neither
does the view-dependent appearance ci of a Gaussian—e.g.,
only a Gaussian’s position x, scale s, and rotation via q can
changes to describe the scene, which is equivalent to an
affine transform. Allowing the deformation field to vary σi

and ci provides too few constraints on the underlying scene
motion, as Gaussians can appear or disappear, or change
their appearance, to represent motions.

The deformed position requires no activation to apply:

xti = xi + δxti (4)

For S, we could predict a pre- or post-exponentiated delta:

Exp(sti) = Exp(si + δsti) or Exp(sti) = Exp(si) + δsti
(5)

Pre- presents a log-linear estimation problem, which is sim-
pler than an exponential one, and allows the optimization
to still estimate negative values. Empirically, this improved
optimized representation quality substantially (Fig. 4).

We must also be careful with quaternion deformation:

||qt
i|| = ||qi + δqt

i|| or ||qt
i|| = ||qi||+ δqt

i (6)

Only unit quaternions represent rotations, so the right-hand
variant will introduce additional unwanted transformations
into the deformation field. Further, qi + δqt

i represents a
rotation that is half-way between qi and δqt

i. While not
strictly a delta, it is fast and sufficient for small rotations.

Input Post-activ. Ours TiNeuVox [4]

Figure 4. Estimating pre-activated scale significantly improves
quality on dynamic objects. Left to right: Ground truth, estimat-
ing post-activation scale difference, estimating pre-activation scale
difference, and the results of prior TiNeuVox work [4] that uses an
MLP to directly predict the new scale for a particular timestep.

3.3. Static-Dynamic Decomposition

Many dynamic scenes contain significant static world re-
gions that do not need to be deformed. Further, real-world
sequences contain small image noise or camera pose er-
rors. A fully-dynamic model will be forced to spend MLP
capacity describing deformations in irrelevant regions. In
contrast, if these regions can be ignored, the MLP can in-
crease deformation fidelity and overall improve image qual-
ity. This issue compounds with the number of required
Gaussians and their cloning and splitting as too many Gaus-
sians can overfit to represent noise; similarly, unnecessarily
cloning and splitting wastes machine memory. For instance,
for a fully-dynamic model, some of our tested sequences
lead to out-of-memory crashes.

To combat this, we use a separate static Gaussian point
cloud {Gj = (xj ,Σj , σj , cj)}j∈Nr

that leads to higher-
quality overall dynamic view synthesis (Fig. 5). In random
initialization settings, half of the point cloud is assigned
as static and half as dynamic. During rendering, we con-
catenate {Gt

i}i∈N and {Gj}j∈Nr as input to the rasterizer.
During optimization, the two point cloud are densified and
pruned separately and can capture the appearance of static
and dynamic parts without explicit supervision (Fig. 6).

However, this process may need some help. Consider
the case when Kerbl et al. [12] initialize the Gaussian point
cloud by sampling a precomputed 3D point cloud from
structure from motion. Dynamic objects will not appear in
this point cloud, and so it will take a long time to optimize
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Figure 5. Separate deformable and quasi-static regions im-
proves quality in dynamic parts. Left to right: Ground truth,
deformable set, separate static and deformable sets, and the results
of NDVG [9] that uses deformable grids without separation.

Input Static Dynamic Separation

Figure 6. Static/dynamic separation visualization. The input
video does not see one part of the static scene (white).

Gaussians into this region (if they ever reach it at all). As
such, we randomly re-distribute the dynamic Gaussians in
space. Further, some initial point clouds are dense given the
video input (> 1e5) and using all points is memory expen-
sive; random sampling only a subset mitigates this issue.

3.4. Implementation

Positional/Temporal Encoding We facilitate high-
frequency deformation fields through PE encoding both the
position x and time t inputs to the MLP by γ, where, for
example, Lx is the respective encoding base for x:

γ(x) = (sin(20x), cos(20x), sin(21x),

cos(21x), . . . , sin(2Lx−1x), cos(2Lx−1x))
(7)

We use Lµ = 10, Lt = 6 for synthetic scenes and Lµ =
10, Lt = 6 for real-world scenes.

Network architecture Our deformation MLP (Fig. 3) is
inspired by Fang et al. [4]. Along with a time t embed-
ding vector space, we also use a Gaussian position x em-
bedding vector space. In the middle MLP layer, we add a
skip connection such that the time embedding and Gaussian
position x embedding are concatenated and passed into the
second half of the MLP. Empirically, this improved perfor-
mance. As the Gaussian position is input to the MLP and
is also being optimized through a separate path, we manu-
ally stop the gradient from flowing back through the MLP to
the Gaussian position. This prevents the deformation MLP
from entangling the position representations.

We use MLPs with 8 layers of 256 neurons for synthetic
scenes and 6 layers of 256 neurons for real-world scenes.

Optimizer We use Adam with β = (0.9, 0.999) and
eps = 1e−15. The learning rate for the deformation
MLP is 0.0007 for synthetic datasets and 0.001 for real-
world datasets, with exponential scheduling that shrinks to
0.002× the original learning rate until 30 K iterations. We
densify both Gaussian point clouds until 20 K iterations,
and keep optimizing both the Gaussians and the MLP un-
til 40 K iterations for synthetic datasets and 60 K iterations
for real-world datasets.

Warm-up Routine To stabilize optimization, the MLP
linear layer initial weights and bias are set to ∼ N (0, 1e−5)
such that only small deformations are predicted at the begin-
ning. During initial optimization, we only begin deforming
Gaussians after 3 K iterations to provide a more stable start.

Losses We optimize using an image-based reconstruction
loss only. For synthetic scenes, we use an L1 loss. For real-
world scenes, in early optimization until 20 K iterations, we
use an L2 loss; then, we switch to an L1 loss. This helps
to increase reconstruction sharpness late in the optimization
while allowing gross errors to be minimized quickly.

4. Experiments

Metrics We measure novel view synthesis performance
using standard PSNR, SSIM, MS-SSIM and LPIPS met-
rics. We use both SSIM and MS-SSIM as each were used
previously as standard on different datasets. We report op-
timization time and rendering time of methods on a single
NVIDIA 3090 GPU.

Synthetic dataset: D-NeRF [26] This contains monocu-
lar exocentric 360° recordings of 8 dynamic synthetic ob-
jects with large motions and realistic materials. To fairly
compare with peers, we train and render at half resolution
(400× 400) with a white background.



Real-world dataset: NeRF-DS [37] This is formed of
real-world dynamic scene sequences containing specular
objects captured with a handheld camera.

4.1. Comparisons

MLP + MLP deformation We report results from Ner-
fies [22], HyperNeRF[23] and NeRF-DS on the NeRF-DS
dataset (Tab. 2). All three use volumes represented by
MLPs to recover a scene, where the scene is then deformed
via another MLP from a canonical space. While MLPs can
achieve high quality, they take a long time to train. Our
approach achieves higher reconstruction quality in a much
shorter amount of time, and allows real-time rendering of
the recovered representation.

Fast optimization Voxel grids allow faster optimization.
For example, NDVG [9] uses a fixed voxel grid in a canon-
ical space and deforms it with an MLP, leading to rapid
optimization times. However, their quality suffers against
our method, showing significantly worse metrics across D-
NeRF and NeRF-DS dataset. In qualitative comparisons,
we see lower image quality in both D-NeRF (Fig. 7) and
NeRF-DS (Fig. 8). Another approach is TiNeuVox[4].
Again optimization time is fast, but quality is notably lower
by eye and by metrics on D-NeRF and NeRF-DS. Plane-
based methods also provide fast optimization. Both K-
planes [7] and HexPlanes [2] show similar optimization
times to our method on D-NeRF, with reduced image qual-
ity across all metrics.

Fast rendering If we only wished to render a scene
quickly, we could spend longer in optimization. For in-
stance, V4D [8] uses 3D voxel grids and a smaller defor-
mation MLPs with volume rendering. Efficient implemen-
tation can allow inference at a few Hz. However, our repre-
sentation can be rendered in real-time while showing better
results on both D-NeRF and NeRF-DS data.

Contemporaneous Gaussian We run Wu et al. [33]’s
4DGaussians public code to generate results on D-NeRF.
While their method is faster to optimize, both methods can
be rendered in real time. Further, both methods produce
broadly similar qualitative performance, with only a slight
increase in metrics for our method. Our approach addition-
ally separates static and dynamic regions, which may be
useful additional information for downstream tasks.

Ablation Table 4 shows image quality metrics for abla-
tions of our method that remove components. The most
significant of these is the removal of the static Gaussians,
which improves image sharpness in static regions. We also
ablate three other components: 1) the transition from L2

PSNR↑ SSIM↑ LPIPS↓ Optim. ↓ Render↓

NDVG [9] 30.5 0.965 0.054 25mins 1.7s
TiNeuVox [5] 32.9 0.972 0.041 20mins 1.9s
K-planes [7] 29.2 0.961 0.060 60mins 8s
Hexplane [2] 31.0 0.968 0.039 15mins 0.5s
V4D [8] 33.4 0.978 0.027 ∼hours 0.5s
4DGaussians [33] 32.9 0.977 0.024 15mins 0.01s
Ours 34.8 0.982 0.020 25mins 0.02s

Table 1. Quantitative image quality results on the dataset from
D-NeRF [26]. Our method produces the highest metrics in the
synthetic D-NeRF dataset with accurate camera poses.

PSNR↑ SSIM↑ LPIPS↓
Nerfies [22] 20.1 0.707 0.349
HyperNeRF [23] 23.0 0.854 0.181
NeRF-DS [37] 23.7 0.885 0.143

NDVG [9] 19.1 0.584 0.417
TiNeuVox [4] 21.7 0.818 0.219
V4D [8] 23.5 0.884 0.142

Ours 23.8 0.887 0.144

Table 2. Quantitative image quality results on the dataset from
NeRF-DS [37]. Our approach on average shows improved PSNR,
SSIM (here the multi-scale variant), and LPIPS metric perfor-
mance than most methods, and comparable image quality metric
performance to NeRF-DS [37] and V4D [8]. However, in contrast
to these two methods that each take hours to optimize a represen-
tation for a scene and seconds to render each frame, our approach
takes minutes to optimize per scene and can render frames in real
time (Tab. 3).

loss to L1, 2) the choice to pre-exponentiate the scale defor-
mation instead of post-exponentiating it, and 3) the warmup
of the Gaussian optimization before allowing deformation.
Each contributes a smaller improvement to the final image
quality of the method. Further, the addition of each com-
ponent does not have an impact upon the final novel view
render time.

5. Limitations and Conclusion
Currently, we use a single MLP to model the whole de-
formation field. Despite the existence of the static Gaus-
sian points, modeling scenes with big or irregular motion
is difficult for this network, especially given that the net-
work capacity has to be constrained to prevent overfitting
on the input images. This may produce blurriness or float-
ing artifacts. A potential improvement is to aid the MLP
with better knowledge of where deformations may happen,
such as by using priors from optical flow estimation meth-
ods. Additionally, our dynamic/static separation is sensi-
tive to the quality of the initial SfM point cloud for real-



Ground Truth V4D Hexplane TiNeuVox NDVG 4D Gaussians Ours

Figure 7. Quantitative comparison of our approach and the baseline methods for test views from the synthetic DNeRF [26] dataset. All
methods reproduce the rough geometry, but sufficient sampling is necessary to reproduce the fine detail. Our approach can efficiently
spread Gaussians to both static and dynamic regions to maximize quality, producing the sharpest image of all compared methods.

world scenes. Its benefit is to better distribute static points,
but dynamic points still must be optimized from a random
initialization—some dynamic elements are sensitive to this.

Conclusion Gaussians parameterized by time are a pow-
erful way to optimize and render dynamic scenes with high
quality. For monocular settings, we show that a deformation
field is a suitable representation that achieves high quality
reconstructions without degrading render times beyond real
time. Notably, we show that separating the Gaussian set

into static and dynamic regions rather than just dynamic im-
proves quality and can produce segmented scenes. In com-
parisons to other methods, we show improved quality by vi-
sual comparison, and by image-quality metrics like LPIPS
on both synthetic and real world scenes.
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Figure 8. Qualitative results on the NeRF-DS [37] monocular video dataset versus voxel- and sampled-space-based approaches
show reduced quality compared to our method. Sequences from top to bottom are Sheet, Bell, and Cup. Our approach better reproduces
fine details for test views, including details on dynamic objects such as hands, and higher quality on static objects.

PSNR↑ Optim.↓ Render↓
Nerfies [22] 20.1 ∼hours -
HyperNeRF [23] 23.0 ∼hours -
NeRF-DS [37] 23.7 ∼hours -

NDVG [9] 19.1 ∼ 1hour > 1s
TiNeuVox [4] 21.7 30mins > 1s
V4D [8] 23.5 ∼hours > 1s

Ours 23.8 19mins 0.03s

Table 3. Quantitative comparison on the NeRF-DS [37] dataset.
While some methods achieve comparable performance to ours, our
method is much faster to optimize and to render.
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