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Figure 9. Per-frame optimization struggles on monocular
video. While this works well on training views (top center), the
lack of constraints causes serious errors in test views (bottom cen-
ter). Our deformation-based method is better able to handle these
sparse constraints. This motivates our approach.

6. Motivation: Per time step vs. deformation-
based approaches

One basic option when considering how to implement dy-
namic Gaussian splatting is to optimize the Gaussian pa-
rameters per timestep. Another is to build an initial good
first-frame reconstruction and then directly optimize the
Gaussian parameters over time in a frame-to-frame fashion.
In situations where the Gaussians are well constrained, such
as in multi-view video conditions, per timestep optimiza-
tion works from the training views such that generated in-
termediate test views are correct. This can provide an initial
good first-frame from which to conduct a frame-to-frame
approach over time [12].

In the monocular video case, it is tricky to deploy either
approach (Fig. 9, middle) and both will fail to generate plau-
sible test views: First, the Gaussians are underconstrained;
they are free to move in one spacetime dimension and still
appear correct in the training views, so test views will not
look correct. Second, as the Gaussians are incorrect, there
is never a good first-frame (or any t-frame) initialization
from which to perform frame-to-frame deformation, unlike
in Kerbl et al.’s case with multi-view video [12].

Instead, our deformation-based approach with a canon-
ical frame (Fig. 10) makes it easier to constrain the Gaus-
sians over time, producing more plausible test views that
maintain their integrity (Fig. 9, right). This is because in-
formation on the position and size of the dynamic regions
is shared within the canonical frame. For static scene ele-
ments, our separate set of Gaussians allows multi-view con-
straints to be used.

7. Additional results
Table 6 contains quantitative results for each sequence in
the NeRF-DS [38] dataset individually.

HyperNeRF dataset [23] We will additionally use the
real-world monocular video HyperNeRF dataset for eval-
uation. This is formed of real-world dynamic scene se-
quences captured with a handheld camera. For test views,
there are two modes: 1) ‘vrig’, where a second handheld
camera was pointed at the scene, and where these camera
poses are somewhat in error given the dynamic scenes; 2)
‘interp’, where test frames are at unseen times within a sin-
gle video. This dataset has challenging sequences. With the
camera pose error, some methods perform better under cer-
tain errors than others (Tab. 5). Please see our qualitative
results, too (Fig. 11).

8. Static/dynamic separation and depth
Figure 12 shows more examples of the separation of static
and dynamic regions, given that our model explicitly sepa-
rates static regions. While this aspect of our approach relies
on dynamic regions undergoing sufficient motion for high
quality, when this is so the results show good-quality static
background regions (Bell) and reconstruction of objects in
motion like the knife in Lemon.

Further, Figure 13 shows that our approach produces rea-
sonable results for depth on the evaluation datasets.
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Figure 10. Optimizing Gaussians per time step from training views leads to low-quality test views for monocular video. A lack of
spacetime constraints causes Gaussians to fail to represent as meaningful images (a). A canoncial space with a deformation field helps
improve the integrity of the image in situations with few constraints (b).

HyperNeRF-vrig [23] (real)

PSNR" MS-SSIM" LPIPS# Optim. #

Nerfies [22] 22.2 0.803 - ⇠hours
HyperNeRF [23] 22.5 0.816 - ⇠hours
NDVG [9] 23.4 0.777 0.566 35mins
TiNeuVox [5] 24.2 0.791 0.478 20mins
V4D [8] 24.8 0.827 0.417 ⇠hours
Ours 22.6 0.779 0.353 2hours

HyperNeRF-interp [23] (real)

PSNR" MS-SSIM" LPIPS# Optim. #

NDVG [9] 23.9 0.785 0.540 35mins
TiNeuVox [5] 27.0 0.889 0.386 20mins
V4D [8] 27.3 0.909 0.322 ⇠hours
Ours 25.0 0.838 0.309 1.5hours

Table 5. Quantitative comparison for novel-view synthesis [23].
For HyperNeRF, pose error causes alignment issues to reduce
PSNR, but our overall image quality is maintained as shown by
the lowest LPIPS metric evaluation. Please see our qualitative re-
sults for comparison.
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Figure 11. Quantiative comparison of our approach and the baseline methods at test views on the real-world HyperNeRF-vrig [23] dataset.
Our approach most closely matches the ground truth in quality, producing sharper images with more detail such as the tiny holes in the
bricks (top) or the texture pattern on the sleeve (bottom). Note that, quantitatively, our approach produces lower PSNR and SSIM scores
than both TiNeuVox and V4D, which may both be oversmooth, even though qualitatively more fine detail is reproduced in our method.



Sheet Basin Bell Cup

PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#
Ref-NeRF [33] 21.1 0.673 0.296 18.0 0.643 0.319 18.5 0.564 0.420 20.5 0.705 0.318
Nerfies [22] 23.6 0.834 0.183 18.1 0.635 0.368 19.9 0.696 0.389 20.7 0.750 0.293
HyperNeRF [23] 24.3 0.874 0.148 20.2 0.829 0.168 24.0 0.884 0.159 24.1 0.896 0.138
NeRF-DS [38] 24.7 0.887 0.141 20.1 0.835 0.149 23.9 0.887 0.138 24.4 0.912 0.122

NDVG [9] 18.3 0.462 0.461 16.9 0.585 0.409 17.1 0.422 0.625 23.4 0.825 0.2å57
TiNeuVox [4] 21.3 0.740 0.315 20.6 0.860 0.142 23.1 0.878 0.160 19.9 0.773 0.269
V4D [8] 24.8 0.901 0.133 20.1 0.848 0.140 24.9 0.913 0.128 24.6 0.906 0.116

Ours 25.6 0.899 0.125 19.6 0.852 0.145 25.4 0.917 0.124 24.3 0.922 0.117

Plate Press Sieve Average (Mean)

PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#
Ref-NeRF [33] 15.3 0.513 0.464 21.3 0.679 0.341 22.1 0.815 0.220 19.5 0.656 0.340
Nerfies [22] 15.4 0.489 0.599 21.3 0.720 0.377 21.8 0.823 0.232 20.1 0.707 0.349
HyperNeRF [23] 18.1 0.714 0.359 25.4 0.873 0.164 25.0 0.909 0.129 23.0 0.854 0.181
NeRF-DS [38] 20.5 0.855 0.196 26.1 0.894 0.142 26.0 0.928 0.112 23.7 0.885 0.143

NDVG [9] 17.4 0.629 0.391 23.3 0.772 0.282 17.2 0.393 0.492 19.1 0.584 0.417
TiNeuVox [4] 20.5 0.820 0.224 25.2 0.863 0.171 21.1 0.793 0.253 21.7 0.818 0.219
V4D [8] 19.0 0.788 0.221 26.4 0.907 0.135 24.9 0.922 0.118 23.5 0.884 0.142

Ours 20.0 0.818 0.238 25.8 0.894 0.147 26.0 0.904 0.114 23.8 0.887 0.144

Table 6. Quantitative image quality results on the dataset from NeRF-DS [38]. Our approach on average shows improved PSNR, SSIM
(here the multi-scale variant), and LPIPS metric performance than most methods, and comparable image quality metric performance to
NeRF-DS [38] and V4D [8]. However, in contrast to these two methods that each take hours to optimize a representation for a scene and
seconds to render each frame, our approach takes minutes to optimize per scene and can render frames in real time (Tab. 3).
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Figure 12. Static/dynamic separation visualization. Top to bottom: Results on scenes from the Peel sequence from HyperNeRF-vrig [23]
dataset, the Lemon sequence from HyperNeRF-interp [23] dataset, and the Bell sequence from NeRF-DS [38] dataset. With sufficient
motion in the sequence, such as in Bell, our approach well separates the dynamic object and produces a sharp static background. In
sequences with inaccurate camera poses, such as in Peel, the separation is more difficult as static regions do not appear consistently static
to the optimization and so there is more noise in the separation. However, the broad motions are still separated.



Figure 13. Top to bottom: The novel-view rendering and depth
from our method for scenes from the NeRF-DS [38], D-NeRF [26]
and HyperNeRF [23] datasets.
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